|
veoexrmpzt |
Wysłany: Pon 9:47, 04 Kwi 2011 Temat postu: adidas scarpe qnd ywl dnws qbp |
|
Sine, Cosine Proof
(A + C) = b is b2 = c2 + a2-2ac ~ eosB same reason: 3, the use of AABC proof of the high line (I) as shown in Figure 8, in the AABC, the cross point B for BD on the AC,adidas scarpe, vertical enough for the D. fAD2 + BD2 = c2 '. 'BD2 + DCz = 82 【AD + Dc: b Solution of the above equations have fAD = {DC = base lBD =-,~/- 2a2-b2-+-2b2-c2 +2 c2-a2 - a-4_ a b4-c4 =: b2 + c2 a a22bC27Xb2 + c2 is a a2-a a2: b2 + c2-2be · cc ~, A Second Zhu provable that most of A4, using horns and proof of the cosine formula (I) Db Figure 8C Figure 8, in, over point B for BD on the AC, pedal to D. eosZAN2 = COS (ZABD + CBD): cosZABD ~ ZCBD-sinLABDsinLCBD = BD · BD side of the AD · IX; = BIY a _AD. DC --- B. . . I. . Y. . . . . -. . . A. . - D -. . . . . D. . -C-3 derived the method of the AD,Thomas Sabo online shop, IX;, BD, respectively, on behalf of the people on the type, may eosLAN; 2ab +2 b2c2 +2 c2a2 a a4 b4 a C4b + c2 a one a2a2 + b2 a c2: Caa2 + c2 b2 a One - that b2 = c2 + a2-2ac · eosB same reason fa2: b2 + c2-2bc · Cc ~, A (c2 = a2 ten b2-2ab · cosC5, using horns and proof of the cosine formula (Ⅱ) Figure 8, in, over point B for BD on the AC, pedal to D. ∞ sC = cos (ABD + CBD) = cosZABDc ~ ZCBD-sinLABDsinLCBD:. forty-one. ABBCABBC: a BrY one:-BrY-A -D.DCcacaca '.' AB2 + BC2 an AC2 = (AIY + BD2) + (BD2 + DC2) a (AD + CC) = 2BD2-2AD · IX;. ·. BD2 a AD.DC: Next AB2 + BC2 -AC2: button ... eosZAl ~:: Ca that b2 = c2 + a2-2ac · eosB same reason fa2 = b2 + c2-2bc · cc ~,herve leger outlet, A (c2 = a2 + b2-2ab · cosC6, use proof of the high line (Ⅱ) as shown in Figure 8, in, over point B for BD on the AC, the pedal is DcosZAt ~ = COS [180. A (A + C)]: a cos (A + C) =-- ccc,ghd piastra, Aco ~ sinAsinC: ... AD + d .- B - D - 2 ------ A - D ---.-C-- D-::-B - D - 2- ------ A - D --- .- C --- D-AB · BCca the following procedure, the second half with Method 4 or Method 5 will do the second half of .7, the use of the high C line of proof (Ⅲ) in Figure 8, in,mbt laarzen, over point B for BD on the AC, pedal to D. ADAD · ACosA-AB'-AC - AD. (AD - + DC) --. A.. .. D. ... 2 ...+..... A. .. D. ........ D. .- C-AB · ACAB · ACAD2 + AD · DC = a cb ' . 'AB2 + AC2 a BC2 = (AIY + BI) 2) + (AD + CC) 2 A (B + DC2) = 2AIY +2 AD · IX; .. AIY + AD · IX; AB2 + AC2 a BC2C2 + b2 a a22. · .= the same reason (b2 = c2 + a2-2ac · cosB (c2 = a2 + b2-2ab · c0sC2a2: b2 + C2-2be · a) sA the question, when the calculated co = lan ± when the method 3 can also be concluded on behalf of the people. simplified available cosA: also to prove the law of cosines. DC of mathematical problems, in many cases, flexible staffing point of view, the corresponding solution is also rich colorful. Sine and Cosine proof to a mathematical method that best reflects the flexibility and diversity. |
|
|
|
|
|